If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2-10x=0
a = 40; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·40·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*40}=\frac{0}{80} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*40}=\frac{20}{80} =1/4 $
| 24.2+5x=28.65 | | 8^-x=3.7 | | 3.2m+7.45=6.396 | | 13s=39 | | 8^(-x)=3.7 | | 13x-20=45 | | 0.75x^2=54 | | 25=d-8 | | (6x+10)=(10x+10) | | X/13+2x/3+x/4=10 | | X+(x-2)/3=1+(x-1)/2 | | (x+20)=(4x-5) | | 7x+2(5x+41)=71 | | (7x-4)=(3x+28) | | 5(x-1)^2+3=23 | | (8x+10)=(6x+30) | | 1/(z+2)-1/2=z/(z+2) | | 3/5t-13=1/5t-9 | | (7x+9)=(9x-23) | | -4(7r-4)=-32-4r | | 20/9=x^2/9 | | Y=0.5+4x | | 5(4m+4)=-m-1 | | (2x-26)=(7x+8) | | X+x-2/3=1+x-1/2 | | -7(6-7m)-8m=5m-6 | | -21/3k-31/3=-21/6 | | 9x+3(-3x+4)=-7 | | (4x-9)=(3x+29) | | x+7=-11+7x | | X+7/4=3x/5 | | (4x-9)=93x+29) |